

RUTGERS

Background

The Threat-Advantage Hypothesis

• Evolutionary pressures have shaped the visual system so that threat-related information is detected and processed with greater efficiency¹.

Anger Superiority Effect

• In visual search displays, angry faces (a threat relevant stimulus) are detected faster than other emotional faces when depicted in photographs² and schematically³. The anger superiority effect has also been shown with the eyes alone⁴.

Preferential Processing of Fearful Faces

• Fearful faces (also threat relevant) inhibit the processing of other emotional faces⁵ and are processed faster than other emotional faces coming into consciousness⁶.

Recognition of Emotional Body Postures

- Previous studies of emotional body posture recognition find that emotional postures are recognizable⁷.
- However many studies using static body postures don't include norming information or whole hand shape.
- It is unclear if bodies are processed similarly to faces⁸ but the work of Beatrice de Gelder suggests they are⁹.

Question of Interest

 Observers demonstrate enhanced visual sensitivity to angry and fearful faces in static displays. Might observers also demonstrate enhanced sensitivity to angry and fearful body postures in static displays?

Experiment 1

Approach

Confirm that angry faces are detected faster than other faces by replicating Horstmann & Ansorge, 2009.

Sample Stimuli

Methods

- 13 naïve observers participated in this visual search task.
- Within subjects design.
- 216 static, schematic faces (.91 DVA) in random order.
- 1/2 same displays; 1/2 different displays.
- Observers reported, as quickly as possible, whether or not there was a different face in the crowd.
- Target and crowd emotions (angry, happy, neutral) varied systematically across displays.
- Display sizes were: 6.7 DVA tall and 5.9 DVA wide.

Does the Threat Advantage Hypothesis Extend to Static Body Postures?

Ashley Blanchard & Maggie Shiffrar

Rutgers University, Newark

Angry

Fearful

Sad

Neutral

Methods

•16 naïve observers viewed 128 static, emotional body postures sequentially presented in random order. • Observers viewed each posture, identified its emotion with a button press, and then rated its intensity.

Angry Target Angry Distractors

Angry Target Sad Distractors

⁶Yang, E., Zald, D.H., & Blake, R. (2007). Fearful expressions gain preferential access to awareness during continuous flash suppression. *Emotion*, 7(4), 882-886. ⁷Atkinson, A. P., Dittrich, W.H., Gemmell, A. J., Young, A.W. (2004). Emotion perception from dynamic and static expressions in point-light and full-light displays. *Perception*, 33, 717-746.

⁸ Slaughter, V., Stone, V.E., Reed, C. (2004). Perception of faces and bodies: Similar or different? Current Directions in Psychological Science, 13(6), 219-223. ⁹ de Gelder, B. (2009). Why bodies? Twelve reason for including bodily expressions

in affective neuroscience. *Philosophical Transactions of The Royal Society B: Biological Sciences*, 364, 3475-3484.

For more information, contact Ashley Blanchard at ablanchard@psychology.rutgers.edu Thanks to: Gretchen Van de Walle, Christina Joseph, Stephanie Peters, Ali Gould, Adam Doerrfeld, Stephen Ivory, James Thomas, & John Franchak Sr and to NSF grant EXP-SA 0730985.